点击回首页
我的浏览记录 | | 帮助?
当前位置:
首页>> 企业应用>> 新翔网络OA系统V1.0>> 源文件浏览
[商业版 200RMB] WebForm,下载次数:1 次 | 关键字: PHP MYSQL OA 办公 网络办公

源码截图

源码目录树

;
当前路径:Classes/PHPExcel/Shared/JAMA/QRDecomposition.php
<?php
/**
 *    @package JAMA
 *
 *    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 *    orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 *    A = Q*R.
 *
 *    The QR decompostion always exists, even if the matrix does not have
 *    full rank, so the constructor will never fail.  The primary use of the
 *    QR decomposition is in the least squares solution of nonsquare systems
 *    of simultaneous linear equations.  This will fail if isFullRank()
 *    returns false.
 *
 *    @author  Paul Meagher
 *    @license PHP v3.0
 *    @version 1.1
 */
class PHPExcel_Shared_JAMA_QRDecomposition
{
    const MATRIX_RANK_EXCEPTION  = "Can only perform operation on full-rank matrix.";

    /**
     *    Array for internal storage of decomposition.
     *    @var array
     */
    private $QR = array();

    /**
     *    Row dimension.
     *    @var integer
     */
    private $m;

    /**
    *    Column dimension.
    *    @var integer
    */
    private $n;

    /**
     *    Array for internal storage of diagonal of R.
     *    @var  array
     */
    private $Rdiag = array();


    /**
     *    QR Decomposition computed by Householder reflections.
     *
     *    @param matrix $A Rectangular matrix
     *    @return Structure to access R and the Householder vectors and compute Q.
     */
    public function __construct($A)
    {
        if ($A instanceof PHPExcel_Shared_JAMA_Matrix) {
            // Initialize.
            $this->QR = $A->getArrayCopy();
            $...
完整源码文件,请先购买后再查看
关于我们 | 顾问团队 | 发展历程 | 联系我们 | 源码上传
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2022. 京ICP备09089570号 | 京公网安备11010702000869号