点击回首页
我的浏览记录 | | 帮助?
当前位置:
首页>> 企业应用>> 新翔网络OA系统V1.0>> 源文件浏览
[商业版 200RMB] WebForm,下载次数:1 次 | 关键字: PHP MYSQL OA 办公 网络办公

源码截图

源码目录树

;
当前路径:Classes/PHPExcel/Calculation/Statistical.php
<?php

/** PHPExcel root directory */
if (!defined('PHPEXCEL_ROOT')) {
    /**
     * @ignore
     */
    define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');
    require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');
}


require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';


/** LOG_GAMMA_X_MAX_VALUE */
define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);

/** XMININ */
define('XMININ', 2.23e-308);

/** EPS */
define('EPS', 2.22e-16);

/** SQRT2PI */
define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);

/**
 * PHPExcel_Calculation_Statistical
 *
 * Copyright (c) 2006 - 2015 PHPExcel
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * @category    PHPExcel
 * @package        PHPExcel_Calculation
 * @copyright    Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 * @license        http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 * @version        ##VERSION##, ##DATE##
 */
class PHPExcel_Calculation_Statistical
{
    private static function checkTrendArrays(&$array1, &$array2)
    {
        if (!is_array($array1)) {
            $array1 = array($array1);
        }
        if (!is_array($array2)) {
            $array2 = array($array2);
        }

        $array1 = PHPExcel_Calculation_Functions::flattenArray($array1);
        $array2 = PHPExcel_Calculation_Functions::flattenArray($array2);
        foreach ($array1 as $key => $value) {
            if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
                unset($array1[$key]);
                unset($array2[$key]);
            }
        }
        foreach ($array2 as $key => $value) {
            if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
                unset($array1[$key]);
                unset($array2[$key]);
            }
        }
        $array1 = array_merge($array1);
        $array2 = array_merge($array2);

        return true;
    }


    /**
     * Beta function.
     *
     * @author Jaco van Kooten
     *
     * @param p require p>0
     * @param q require q>0
     * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
     */
    private static function beta($p, $q)
    {
        if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {
            return 0.0;
        } else {
            return exp(self::logBeta($p, $q));
        }
    }


    /**
     * Incomplete beta function
     *
     * @author Jaco van Kooten
     * @author Paul Meagher
     *
     * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
     * @param x require 0<=x<=1
     * @param p require p>0
     * @param q require q>0
     * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
     */
    private static function incompleteBeta($x, $p, $q)
    {
        if ($x <= 0.0) {
            return 0.0;
        } elseif ($x >= 1.0) {
            return 1.0;
        } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
            return 0.0;
        }
        $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
        if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
            return $beta_gam * self::betaFraction($x, $p, $q) / $p;
        } else {
            return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
        }
    }


    // Function cache for logBeta function
    private static $logBetaCacheP      = 0.0;
    private static $logBetaCacheQ      = 0.0;
    private static $logBetaCacheResult = 0.0;

    /**
     * The natural logarithm of the beta function.
     *
     * @param p require p>0
     * @param q require q>0
     * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
     * @author Jaco van Kooten
     */
    private static function logBeta($p, $q)
    {
        if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
            self::$logBetaCacheP = $p;
            self::$logBetaCacheQ = $q;
            if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
                self::$logBetaCacheResult = 0.0;
            } else {
                self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
            }
        }
        return self::$logBetaCacheResult;
    }


    /**
     * Evaluates of continued fraction part of incomplete beta function.
     * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
     * @author Jaco van Kooten
     */
    private static function betaFraction($x, $p, $q)
    {
        $c = 1.0;
        $sum_pq = $p + $q;
        $p_plus = $p + 1.0;
        $p_minus = $p - 1.0;
        $h = 1.0 - $sum_pq * $x / $p_plus;
        if (abs($h) < XMININ) {
            $h = XMININ;
        }
        $h = 1.0 / $h;
        $frac = $h;
        $m     = 1;
        $delta = 0.0;
        while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION) {
            $m2 = 2 * $m;
            // even index for d
            $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));
            $h = 1.0 + $d * $h;
            if (abs($h) < XMININ) {
                $h = XMININ;
            }
            $h = 1.0 / $h;
            $c = 1.0 + $d / $c;
            if (abs($c) < XMININ) {
                $c = XMININ;
            }
            $frac *= $h * $c;
            // odd index for d
            $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
            $h = 1.0 + $d * $h;
            if (abs($h) < XMININ) {
                $h = XMININ;
            }
            $h = 1.0 / $h;
            $c = 1.0 + $d / $c;
            if (abs($c) < XMININ) {
                $c = XMININ;
            }
            $delta = $h * $c;
            $frac *= $delta;
            ++$m;
        }
        return $frac;
    }


    /**
     * logGamma function
     *
     * @version 1.1
     * @author Jaco van Kooten
     *
     * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
     *
     * The natural logarithm of the gamma function. <br />
     * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
     * Applied Mathematics Division <br />
     * Argonne National Laboratory <br />
     * Argonne, IL 60439 <br />
     * <p>
     * References:
     * <ol>
     * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
     *     Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
     * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
     * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
     * </ol>
     * </p>
     * <p>
     * From the original documentation:
     * </p>
     * <p>
     * This routine calculates the LOG(GAMMA) function for a positive real argument X.
     * Computation is based on an algorithm outlined in references 1 and 2.
     * The program uses rational functions that theoretically approximate LOG(GAMMA)
     * to at least 18 significant decimal digits. The approximation for X > 12 is from
     * reference 3, while approximations for X < 12.0 are similar to those in reference
     * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
     * the compiler, the intrinsic functions, and proper selection of the
     * machine-dependent constants.
     * </p>
     * <p>
     * Error returns: <br />
     * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
     * The computation is believed to be free of underflow and overflow.
     * </p>
     * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
     */

    // Function cache for logGamma
    private static $logGammaCacheResult = 0.0;
    private static $logGammaCacheX      = 0.0;

    private static function logGamma($x)
    {
        // Log Gamma related constants
        static $lg_d1 = -0.5772156649015328605195174;
        static $lg_d2 = 0.4227843350984671393993777;
        static $lg_d4 = 1.791759469228055000094023;

        static $lg_p1 = array(
            4.945235359296727046734888,
            201.8112620856775083915565,
            2290.838373831346393026739,
            11319.67205903380828685045,
            28557.24635671635335736389,
            38484.96228443793359990269,
            26377.48787624195437963534,
            7225.813979700288197698961
        );
        static $lg_p2 = array(
            4.974607845568932035012064,
            542.4138599891070494101986,
            15506.93864978364947665077,
            184793.2904445632425417223,
            1088204.76946882876749847,
            3338152.967987029735917223,
            5106661.678927352456275255,
            3074109.054850539556250927
        );
        static $lg_p4 = array(
            14745.02166059939948905062,
            2426813.369486704502836312,
            121475557.4045093227939592,
            2663432449.630976949898078,
            29403789566.34553899906876,
            170266573776.5398868392998,
            492612579337.743088758812,
            560625185622.3951465078242
        );
        static $lg_q1 = array(
            67.48212550303777196073036,
            1113.332393857199323513008,
            7738.757056935398733233834,
            27639.87074403340708898585,
            54993.10206226157329794414,
            61611.22180066002127833352,
            36351.27591501940507276287,
            8785.536302431013170870835
        );
        static $lg_q2 = array(
            183.0328399370592604055942,
            7765.049321445005871323047,
            133190.3827966074194402448,
            1136705.821321969608938755,
            5267964.117437946917577538,
            13467014.54311101692290052,
            17827365.30353274213975932,
            9533095.591844353613395747
        );
        static $lg_q4 = array(
            2690.530175870899333379843,
            639388.5654300092398984238,
            41355999.30241388052042842,
            1120872109.61614794137657,
            14886137286.78813811542398,
            101680358627.2438228077304,
            341747634550.7377132798597,
            446315818741.9713286462081
        );
        static $lg_c  = array(
            -0.001910444077728,
            8.4171387781295e-4,
            -5.952379913043012e-4,
            7.93650793500350248e-4,
            -0.002777777777777681622553,
            0.08333333333333333331554247,
            0.0057083835261
        );

        // Rough estimate of the fourth root of logGamma_xBig
        static $lg_frtbig = 2.25e76;
        static $pnt68     = 0.6796875;


        if ($x == self::$logGammaCacheX) {
            return self::$logGammaCacheResult;
        }
        $y = $x;
        if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {
            if ($y <= EPS) {
                $res = -log(y);
            } elseif ($y <= 1.5) {
                // ---------------------
                //    EPS .LT. X .LE. 1.5
                // ---------------------
                if ($y < $pnt68) {
                    $corr = -log($y);
                    $xm1 = $y;
                } else {
                    $corr = 0.0;
                    $xm1 = $y - 1.0;
                }
                if ($y <= 0.5 || $y >= $pnt68) {
                    $xden = 1.0;
                    $xnum = 0.0;
                    for ($i = 0; $i < 8; ++$i) {
                        $xnum = $xnum * $xm1 + $lg_p1[$i];
                        $xden = $xden * $xm1 + $lg_q1[$i];
                    }
                    $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
                } else {
                    $xm2 = $y - 1.0;
                    $xden = 1.0;
                    $xnum = 0.0;
                    for ($i = 0; $i < 8; ++$i) {
                        $xnum = $xnum * $xm2 + $lg_p2[$i];
                        $xden = $xden * $xm2 + $lg_q2[$i];
                    }
                    $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
                }
            } elseif ($y <= 4.0) {
                // ---------------------
                //    1.5 .LT. X .LE. 4.0
                // ---------------------
                $xm2 = $y - 2.0;
                $xden = 1.0;
                $xnum = 0.0;
                for ($i = 0; $i < 8; ++$i) {
                    $xnum = $xnum * $xm2 + $lg_p2[$i];
                    $xden = $xden * $xm2 + $lg_q2[$i];
                }
                $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
            } elseif ($y <= 12.0) {
                // ----------------------
                //    4.0 .LT. X .LE. 12.0
                // ----------------------
                $xm4 = $y - 4.0;
                $xden = -1.0;
                $xnum = 0.0;
                for ($i = 0; $i < 8; ++$i) {
                    $xnum = $xnum * $xm4 + $lg_p4[$i];
                    $xden = $xden * $xm4 + $lg_q4[$i];
                }
                $res = $lg_d4 + $xm4 * ($xnum / $xden);
            } else {
                // ---------------------------------
                //    Evaluate for argument .GE. 12.0
                // ---------------------------------
                $res = 0.0;
                if ($y <= $lg_frtbig) {
                    $res = $lg_c[6];
                    $ysq = $y * $y;
                    for ($i = 0; $i < 6; ++$i) {
                        $res = $res / $ysq + $lg_c[$i];
                    }
                    $res /= $y;
                    $corr = log($y);
                    $res = $res + log(SQRT2PI) - 0.5 * $corr;
                    $res += $y * ($corr - 1.0);
                }
            }
        } else {
            // --------------------------
            //    Return for bad arguments
            // --------------------------
            $res = MAX_VALUE;
        }
        // ------------------------------
        //    Final adjustments and return
        // ------------------------------
        self::$logGammaCacheX = $x;
        self::$logGammaCacheResult = $res;
        return $res;
    }


    //
    //    Private implementation of the incomplete Gamma function
    //
    private static function incompleteGamma($a, $x)
    {
        static $max = 32;
        $summer = 0;
        for ($n=0; $n<=$max; ++$n) {
            $divisor = $a;
            for ($i=1; $i<=$n; ++$i) {
                $divisor *= ($a + $i);
            }
            $summer += (pow($x, $n) / $divisor);
        }
        return pow($x, $a) * exp(0-$x) * $summer;
    }


    //
    //    Private implementation of the Gamma function
    //
    private static function gamma($data)
    {
        if ($data == 0.0) {
            return 0;
        }

        static $p0 = 1.000000000190015;
        static $p = array(
            1 => 76.18009172947146,
            2 => -86.50532032941677,
            3 => 24.01409824083091,
            4 => -1.231739572450155,
            5 => 1.208650973866179e-3,
            6 => -5.395239384953e-6
        );

        $y = $x = $data;
        $tmp = $x + 5.5;
        $tmp -= ($x + 0.5) * log($tmp);

        $summer = $p0;
        for ($j=1; $j<=6; ++$j) {
            $summer += ($p[$j] / ++$y);
        }
        return exp(0 - $tmp + log(SQRT2PI * $summer / $x));
    }


    /***************************************************************************
     *                                inverse_ncdf.php
     *                            -------------------
     *    begin                : Friday, January 16, 2004
     *    copyright            : (C) 2004 Michael Nickerson
     *    email                : nickersonm@yahoo.com
     *
     ***************************************************************************/
    private static function inverseNcdf($p)
    {
        //    Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
        //    PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
        //    a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
        //    I have not checked the accuracy of this implementation. Be aware that PHP
        //    will truncate the coeficcients to 14 digits.

        //    You have permission to use and distribute this function freely for
        //    whatever purpose you want, but please show common courtesy and give credit
        //    where credit is due.

        //    Input paramater is $p - probability - where 0 < p < 1.

        //    Coefficients in rational approximations
        static $a = array(
            1 => -3.969683028665376e+01,
            2 => 2.209460984245205e+02,
            3 => -2.759285104469687e+02,
            4 => 1.383577518672690e+02,
            5 => -3.066479806614716e+01,
            6 => 2.506628277459239e+00
        );

        static $b = array(
            1 => -5.447609879822406e+01,
            2 => 1.615858368580409e+02,
            3 => -1.556989798598866e+02,
            4 => 6.680131188771972e+01,
            5 => -1.328068155288572e+01
        );

        static $c = array(
            1 => -7.784894002430293e-03,
            2 => -3.223964580411365e-01,
            3 => -2.400758277161838e+00,
            4 => -2.549732539343734e+00,
            5 => 4.374664141464968e+00,
            6 => 2.938163982698783e+00
        );

        static $d = array(
            1 => 7.784695709041462e-03,
            2 => 3.224671290700398e-01,
            3 => 2.445134137142996e+00,
            4 => 3.754408661907416e+00
        );

        //    Define lower and upper region break-points.
        $p_low = 0.02425;            //Use lower region approx. below this
        $p_high = 1 - $p_low;        //Use upper region approx. above this

        if (0 < $p && $p < $p_low) {
            //    Rational approximation for lower region.
            $q = sqrt(-2 * log($p));
            return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
                    (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
        } elseif ($p_low <= $p && $p <= $p_high) {
            //    Rational approximation for central region.
            $q = $p - 0.5;
            $r = $q * $q;
            return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
                   ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
        } elseif ($p_high < $p && $p < 1) {
            //    Rational approximation for upper region.
            $q = sqrt(-2 * log(1 - $p));
            return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
                     (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
        }
        //    If 0 < p < 1, return a null value
        return PHPExcel_Calculation_Functions::NULL();
    }


    private static function inverseNcdf2($prob)
    {
        //    Approximation of inverse standard normal CDF developed by
        //    B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.

        $a1 = 2.50662823884;
        $a2 = -18.61500062529;
        $a3 = 41.39119773534;
        $a4 = -25.44106049637;

        $b1 = -8.4735109309;
        $b2 = 23.08336743743;
        $b3 = -21.06224101826;
        $b4 = 3.13082909833;

        $c1 = 0.337475482272615;
        $c2 = 0.976169019091719;
        $c3 = 0.160797971491821;
        $c4 = 2.76438810333863E-02;
        $c5 = 3.8405729373609E-03;
        $c6 = 3.951896511919E-04;
        $c7 = 3.21767881768E-05;
        $c8 = 2.888167364E-07;
        $c9 = 3.960315187E-07;

        $y = $prob - 0.5;
        if (abs($y) < 0.42) {
            $z = ($y * $y);
            $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);
        } else {
            if ($y > 0) {
                $z = log(-log(1 - $prob));
            } else {
                $z = log(-log($prob));
            }
            $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));
            if ($y < 0) {
                $z = -$z;
            }
        }
        return $z;
    }    //    function inverseNcdf2()


    private static function inverseNcdf3($p)
    {
        //    ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.
        //    Produces the normal deviate Z corresponding to a given lower
        //    tail area of P; Z is accurate to about 1 part in 10**16.
        //
        //    This is a PHP version of the original FORTRAN code that can
        //    be found at http://lib.stat.cmu.edu/apstat/
        $split1 = 0.425;
        $split2 = 5;
        $const1 = 0.180625;
        $const2 = 1.6;

        //    coefficients for p close to 0.5
        $a0 = 3.3871328727963666080;
        $a1 = 1.3314166789178437745E+2;
        $a2 = 1.9715909503065514427E+3;
        $a3 = 1.3731693765509461125E+4;
        $a4 = 4.5921953931549871457E+4;
        $a5 = 6.7265770927008700853E+4;
        $a6 = 3.3430575583588128105E+4;
        $a7 = 2.5090809287301226727E+3;

        $b1 = 4.2313330701600911252E+1;
        $b2 = 6.8718700749205790830E+2;
        $b3 = 5.3941960214247511077E+3;
        $b4 = 2.1213794301586595867E+4;
        $b5 = 3.9307895800092710610E+4;
        $b6 = 2.8729085735721942674E+4;
        $b7 = 5.2264952788528545610E+3;

        //    coefficients for p not close to 0, 0.5 or 1.
        $c0 = 1.42343711074968357734;
        $c1 = 4.63033784615654529590;
        $c2 = 5.76949722146069140550;
        $c3 = 3.64784832476320460504;
        $c4 = 1.27045825245236838258;
        $c5 = 2.41780725177450611770E-1;
        $c6 = 2.27238449892691845833E-2;
        $c7 = 7.74545014278341407640E-4;

        $d1 = 2.05319162663775882187;
        $d2 = 1.67638483018380384940;
        $d3 = 6.89767334985100004550E-1;
        $d4 = 1.48103976427480074590E-1;
        $d5 = 1.51986665636164571966E-2;
        $d6 = 5.47593808499534494600E-4;
        $d7 = 1.05075007164441684324E-9;

        //    coefficients for p near 0 or 1.
        $e0 = 6.65790464350110377720;
        $e1 = 5.46378491116411436990;
        $e2 = 1.78482653991729133580;
        $e3 = 2.96560571828504891230E-1;
        $e4 = 2.65321895265761230930E-2;
        $e5 = 1.24266094738807843860E-3;
        $e6 = 2.71155556874348757815E-5;
        $e7 = 2.01033439929228813265E-7;

        $f1 = 5.99832206555887937690E-1;
        $f2 = 1.36929880922735805310E-1;
        $f3 = 1.48753612908506148525E-2;
        $f4 = 7.86869131145613259100E-4;
        $f5 = 1.84631831751005468180E-5;
        $f6 = 1.42151175831644588870E-7;
        $f7 = 2.04426310338993978564E-15;

        $q = $p - 0.5;

        //    computation for p close to 0.5
        if (abs($q) <= split1) {
            $R = $const1 - $q * $q;
            $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /
                      ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);
        } else {
            if ($q < 0) {
                $R = $p;
            } else {
                $R = 1 - $p;
            }
            $R = pow(-log($R), 2);

            //    computation for p not close to 0, 0.5 or 1.
            if ($R <= $split2) {
                $R = $R - $const2;
                $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /
                     ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);
            } else {
            //    computation for p near 0 or 1.
                $R = $R - $split2;
                $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /
                     ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);
            }
            if ($q < 0) {
                $z = -$z;
            }
        }
        return $z;
    }


    /**
     * AVEDEV
     *
     * Returns the average of the absolute deviations of data points from their mean.
     * AVEDEV is a measure of the variability in a data set.
     *
     * Excel Function:
     *        AVEDEV(value1[,value2[, ...]])
     *
     * @access    public
     * @category Statistical Functions
     * @param    mixed        $arg,...        Data values
     * @return    float
     */
    public static function AVEDEV()
    {
        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());

        // Return value
        $returnValue = null;

        $aMean = self::AVERAGE($aArgs);
        if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
            $aCount = 0;
            foreach ($aArgs as $k => $arg) {
                if ((is_bool($arg)) &&
                    ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
                    $arg = (integer) $arg;
                }
                // Is it a numeric value?
                if ((is_numeric($arg)) && (!is_string($arg))) {
                    if (is_null($returnValue)) {
                        $returnValue = abs($arg - $aMean);
                    } else {
                        $returnValue += abs($arg - $aMean);
                    }
                    ++$aCount;
                }
            }

            // Return
            if ($aCount == 0) {
                return PHPExcel_Calculation_Functions::DIV0();
            }
            return $returnValue / $aCount;
        }
        return PHPExcel_Calculation_Fun...
完整源码文件,请先购买后再查看
关于我们 | 顾问团队 | 发展历程 | 联系我们 | 源码上传
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2023. 京ICP备09089570号 | 京公网安备11010702000869号