当前路径:vendor/markbaker/complex/classes/src/functions/theta.php <?php /** * * Function code for the complex theta() function * * @copyright Copyright (c) 2013-2018 Mark Baker (https://github.com/MarkBaker/PHPComplex) * @license https://opensource.org/licenses/MIT MIT */ namespace Complex; /** * Returns the theta of a complex number. * This is the angle in radians from the real axis to the representation of the number in polar coordinates. * * @param Complex|mixed $complex Complex number or a numeric value. * @return float The theta value of the complex argument. * @throws Exception If argument isn't a valid real or complex number. */ function theta($complex) { $complex = Complex::validateComplexArgument($complex); if ($complex->getReal() == 0.0) { if ($complex->isReal()) { return 0.0; } elseif ($complex->getImaginary() < 0.0) { return M_PI / -2; } return M_PI / 2; } elseif ($complex->getReal() > 0.0) { return \atan($complex->getImaginary() / $complex->getReal()); } elseif ($complex->getImaginary() < 0.0) { return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal()))); } return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal())); }
相关源码
- 可旋转的彩色立方体C#源代码2021-10-29
- 在线考试系统2021-10-15
- EduSoho开源网校系统源码2019-06-27
- 仿拼多多小程序商城源码2019-06-06
- PHP5网站运行监测系统源码2017-04-14
关于我们 | 顾问团队 | 发展历程 | 联系我们 | 源码上传
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2022. 京ICP备09089570号 | 京公网安备11010702000869号
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2022. 京ICP备09089570号 | 京公网安备11010702000869号