当前路径:vendor/markbaker/complex/classes/src/functions/tanh.php <?php /** * * Function code for the complex tanh() function * * @copyright Copyright (c) 2013-2018 Mark Baker (https://github.com/MarkBaker/PHPComplex) * @license https://opensource.org/licenses/MIT MIT */ namespace Complex; /** * Returns the hyperbolic tangent of a complex number. * * @param Complex|mixed $complex Complex number or a numeric value. * @return Complex The hyperbolic tangent of the complex argument. * @throws Exception If argument isn't a valid real or complex number. * @throws \InvalidArgumentException If function would result in a division by zero */ function tanh($complex) { $complex = Complex::validateComplexArgument($complex); $real = $complex->getReal(); $imaginary = $complex->getImaginary(); $divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real); if ($divisor == 0.0) { throw new \InvalidArgumentException('Division by zero'); } return new Complex( \sinh($real) * \cosh($real) / $divisor, 0.5 * \sin(2 * $imaginary) / $divisor, $complex->getSuffix() ); }
相关源码
- 可旋转的彩色立方体C#源代码2021-10-29
- 在线考试系统2021-10-15
- EduSoho开源网校系统源码2019-06-27
- 仿拼多多小程序商城源码2019-06-06
- PHP5网站运行监测系统源码2017-04-14
关于我们 | 顾问团队 | 发展历程 | 联系我们 | 源码上传
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2023. 京ICP备09089570号 | 京公网安备11010702000869号
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2023. 京ICP备09089570号 | 京公网安备11010702000869号