当前路径:vendor/markbaker/complex/classes/src/functions/atan.php <?php /** * * Function code for the complex atan() function * * @copyright Copyright (c) 2013-2018 Mark Baker (https://github.com/MarkBaker/PHPComplex) * @license https://opensource.org/licenses/MIT MIT */ namespace Complex; //include_once 'Math/Complex.php'; //include_once 'Math/ComplexOp.php'; /** * Returns the inverse tangent of a complex number. * * @param Complex|mixed $complex Complex number or a numeric value. * @return Complex The inverse tangent of the complex argument. * @throws Exception If argument isn't a valid real or complex number. * @throws \InvalidArgumentException If function would result in a division by zero */ function atan($complex) { $complex = Complex::validateComplexArgument($complex); if ($complex->isReal()) { return new Complex(\atan($complex->getReal())); } $t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal()); $uValue = new Complex(1, 0); $d1Value = clone $uValue; $d1Value = subtract($d1Value, $t1Value); $d2Value = add($t1Value, $uValue); $uResult = $d1Value->divideBy($d2Value); $uResult = ln($uResult); return new Complex( (($uResult->getImaginary() == M_PI) ? -M_PI : $uResult->getImaginary()) * -0.5, $uResult->getReal() * 0.5, $complex->getSuffix() ); }
相关源码
- 可旋转的彩色立方体C#源代码2021-10-29
- 在线考试系统2021-10-15
- EduSoho开源网校系统源码2019-06-27
- 仿拼多多小程序商城源码2019-06-06
- PHP5网站运行监测系统源码2017-04-14
关于我们 | 顾问团队 | 发展历程 | 联系我们 | 源码上传
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2023. 京ICP备09089570号 | 京公网安备11010702000869号
联系电话(Tel):4008-010-151(免长途)
地址:北京市海淀区大恒科技大厦五层 邮编:100080
Floor 5th,Daheng Building,Zhongguancun,Beijing,China,100080
51Aspx.com 版权所有 CopyRight © 2006-2023. 京ICP备09089570号 | 京公网安备11010702000869号